Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean.

نویسندگان

  • Maria Byrne
  • Melanie Ho
  • Eunice Wong
  • Natalie A Soars
  • Paulina Selvakumaraswamy
  • Hannah Shepard-Brennand
  • Symon A Dworjanyn
  • Andrew R Davis
چکیده

The most fragile skeletons produced by benthic marine calcifiers are those that larvae and juveniles make to support their bodies. Ocean warming, acidification, decreased carbonate saturation and their interactive effects are likely to impair skeletogenesis. Failure to produce skeleton in a changing ocean has negative implications for a diversity of marine species. We examined the interactive effects of warming and acidification on an abalone (Haliotis coccoradiata) and a sea urchin (Heliocidaris erythrogramma) reared from fertilization in temperature and pH/pCO(2) treatments in a climatically and regionally relevant setting. Exposure of ectodermal (abalone) and mesodermal (echinoid) calcifying systems to warming (+2°C to 4°C) and acidification (pH 7.6-7.8) resulted in unshelled larvae and abnormal juveniles. Haliotis development was most sensitive with no interaction between stressors. For Heliocidaris, the percentage of normal juveniles decreased in response to both stressors, although a +2°C warming diminished the negative effect of low pH. The number of spines produced decreased with increasing acidification/pCO(2), and the interactive effect between stressors indicated that a +2°C warming reduced the negative effects of low pH. At +4°C, the developmental thermal tolerance was breached. Our results show that projected near-future climate change will have deleterious effects on development with differences in vulnerability in the two species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins.

Sea urchins are ecologically and economically important calcifying organisms threatened by acidification of the global ocean caused by anthropogenic CO2 emissions. Propelled by the sequencing of the purple sea urchin (Strongylocentrotus purpuratus) genome, profiling changes in gene expression during exposure to high pCO2 seawater has emerged as a powerful and increasingly common method to infer...

متن کامل

Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide

Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcif...

متن کامل

Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates

CO2 emissions arising from the burning of fossil fuels have altered seawater chemistry far more rapidly than the Earth has previously experienced, and the rate and extent of this change are expected to affect shallow water marine organisms. The increased CO2 diffuses from the atmosphere into ocean surface waters, resulting in increased partial pressure of CO2, and reduced [CO3] and pH. The CO2-...

متن کامل

Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.

Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and ...

متن کامل

Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins

Increasing atmospheric carbon dioxide (CO2) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 278 1716  شماره 

صفحات  -

تاریخ انتشار 2011